Chapter 9 - Modern Deep Learning#


Transformers#

Basic Architecture#

  • Encoder-Decoder Structure

  • Self-Attention Mechanism

  • Position Encoding

  • Feed-Forward Networks

Key Components#

  • Multi-Head Attention

  • Layer Normalization

  • Residual Connections

  • Output Generation

Attention Mechanisms#

Understanding Attention#

  • Basic Concept

  • Types of Attention

  • Importance Weighting

  • Context Learning

Implementation Details#

  • Query-Key-Value

  • Attention Scores

  • Softmax Application

  • Output Computation

Practical Applications#

  • Machine Translation

  • Text Summarization

  • Question Answering

  • Image Captioning

Generative AI Basics#

Types of Generation#

  • Text Generation

  • Image Generation

  • Audio Synthesis

  • Video Creation

Core Concepts#

  • Latent Space

  • Sampling Methods

  • Temperature Control

  • Beam Search

Model Deployment#

Deployment Preparation#

  • Model Optimization

  • Version Control

  • Documentation

  • Testing Strategies

Deployment Options#

  • Cloud Services

  • Edge Devices

  • Mobile Applications

  • Web Integration

Monitoring and Maintenance#

  • Performance Tracking

  • Error Handling

  • Updates and Versioning

  • Resource Management

Best Practices#

Model Development#

  • Architecture Selection

  • Hyperparameter Tuning

  • Training Strategies

  • Validation Methods

Production Considerations#

  • Scalability

  • Security

  • Cost Optimization

  • Maintenance

Ethical Considerations#

  • Bias Detection

  • Fairness Metrics

  • Privacy Concerns

  • Responsible AI